Integration of prior information in Kaplan Meier estimator using Bayesian approach
Hamimes Ahmed* and Benamirouche Rachid
http://dx.doi.org/10.5281/zenodo.4398965
Alger. j. biosciences, vol.01, n02, p.76-82, 2020
Downloads: 0
Views: 440
Abstract
As part of this contribution, we will illustrate the effectiveness of the Bayesian approach in estimating durations; we suggest a new definition of the Kaplan Meier Bayesian estimator based on a stochastic approximation under an informative prior. For this reason, based on the lognormal distribution, we have unconjugated a priori distributions. This method of processing makes it possible to assume that the use of the a priori data with the various suggested methods is sensitive to the choices of the parameters added.
Keywords
Bayesian approach;
nonparametric survival;
Kaplan Meier;
Bayesian estimator
References
- Begin J.F. Analyse MCMC de certains modèles de diffusion avec application à la marche Européenne du carbone. Rapport Technique, Université de Montréal, Canada, 2010.
- Chib S., Greenberg E. Understanding the Metropolis-Hastings algorithm. The American Statistician. 1995, 49, 327–335.
- Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970, 57, 97-109.
- Held U. Représentation graphique et comparaison de courbes de survie. Forum Med Suisse.2010, 10(33), 548-550.
- Khizanov V.G., Maĭboroda R.A modified Kaplan-Meier estimator for a model of mixtures with varying concentrations. Theor. Probability and Math. Statist. 92 (2016), 109-116.
- Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. Equation of state calculations by fast computing machines. The Journal of Chemical Physics. 1953, 21, 1087-1092.
- Robert C.P. Le choix Bayésien : principes et pratiques. Springer. 2006.
- Rossa A. and Zielinski R. Locally Weibull-Smoothed Kaplan–Meier Estimator, Institute of Mathematics Polish Academy of Sciences, Preprint 599. 1999.
- Rossa A., & Zieliński R. A simple improvement of the Kaplan-Meier estimator. Communications in Statistics-Theory and Methods. 2002, 31(1), 147-158.
- Shafiq M., Shah S., & Alamgir M. Modified Weighted Kaplan Meier Estimator. Pakistan Journal of Statistics and Operation Research. 2007, 3(1), 39-44.
Submitted date:
11/30/2020
Reviewed date:
12/25/2020
Accepted date:
12/28/2020