ALGERIAN JOURNAL OF BIOSCEINCES
http://www.ajbjournal.periodikos.com.br/article/doi/10.5281/zenodo.4398965

ALGERIAN JOURNAL OF BIOSCEINCES

Agronomy

Integration of prior information in Kaplan Meier estimator using Bayesian approach

Hamimes Ahmed* and Benamirouche Rachid

Downloads: 0
Views: 440

Abstract

As part of this contribution, we will illustrate the effectiveness of the Bayesian approach in estimating durations; we suggest a new definition of the Kaplan Meier Bayesian estimator based on a stochastic approximation under an informative prior. For this reason, based on the lognormal distribution, we have unconjugated a priori distributions. This method of processing makes it possible to assume that the use of the a priori data with the various suggested methods is sensitive to the choices of the parameters added.

Keywords

Bayesian approach; nonparametric survival; Kaplan Meier; Bayesian estimator

References

  1. Begin J.F. Analyse MCMC de certains modèles de diffusion avec application à la marche Européenne du carbone.  Rapport Technique, Université de Montréal, Canada, 2010. 
  2. Chib S., Greenberg E.   Understanding the Metropolis-Hastings algorithm. The American Statistician. 1995, 49, 327–335.   
  3. Hastings W.K.  Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970, 57, 97-109. 
  4. Held U. Représentation graphique et comparaison de courbes de survie. Forum Med Suisse.2010, 10(33), 548-550.
  5. Khizanov V.G., Maĭboroda R.A modified Kaplan-Meier estimator for a model of mixtures with varying concentrations. Theor. Probability and Math. Statist. 92 (2016), 109-116.
  6. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. Equation of state calculations by fast computing machines. The Journal of Chemical Physics. 1953, 21, 1087-1092.
  7. Robert C.P. Le choix Bayésien : principes et pratiques. Springer. 2006.
  8. Rossa A. and Zielinski R. Locally Weibull-Smoothed Kaplan–Meier Estimator, Institute of Mathematics Polish Academy of Sciences, Preprint 599. 1999.
  9. Rossa A., & Zieliński R. A simple improvement of the Kaplan-Meier estimator. Communications in Statistics-Theory and Methods. 2002, 31(1), 147-158.
  10. Shafiq M., Shah S., & Alamgir M. Modified Weighted Kaplan Meier Estimator. Pakistan Journal of Statistics and Operation Research. 2007, 3(1), 39-44.

Submitted date:
11/30/2020

Reviewed date:
12/25/2020

Accepted date:
12/28/2020

5feaf03d0e88252834d9df4b ajbjournal Articles
Links & Downloads

Alger. j. biosciences

Share this page
Page Sections